Hiroshi
Yanagihara (柳原
宏)
Department
of Applied Science
Faculty of Engineering
Yamaguchi
University
Wake not a sleeping lion.
Hiroshi
Yanagihara
Department of Applied Science
Faculty
of Engineering, Yamaguchi University
Tokiwadai Ube,
755-8611 Japan
hiroshi@yamaguchi-u.ac.jp
Complex
Analysis
- Bloch and Landau constants
- Geometric
Function Theory
- Analysis on Universal covering maps
Stochastic
Process
- Conformal maritingale
- Diffusion Processes
on Riemann Surfaces
[1]
H. Yanagihara,
A Tauberian theorem for a certain class of
meromorphic functions,
Kodai Math. J. 7(1984), 238-247.
[2]
H. Yanagihara,
Brownian motions on Riemann surfaces of
inverse functions,
Function spaces on Riemann surfaces, Proc.
Symp., Kyoto 1985,
RIMS Kokyuroku 571(1985), 11-15.
[3]
H. Yanagihara,
Stochastic determination of moduli of
annular regions and tori,
Ann. Probability, 14(1986),
1404-1410.
[4]
H. Yanagihara,
Quasi-conformal variations and local
minimality of the Ahlfors-Grunsky function,
J. Anal. Math.
51(1988), 30-61.
[5]
H. Yanagihara,
Extremal functions for Boch constants,
Kodai Math. J. 11(1988), 44-46.
[6]
H. Yanagihara,
Variational formula of inverse of
quasiconformal mappings,
Complex Variables, Theory Appl.
17(1991), 73-78.
[7]
H. Yanagihara,
An integral inequality for derivatives of
equimeasurable rearrangements,
J. Math. Anal. Appl. 175(1993),
448-457.
[8]
H. Yanagihara,
Sharp distortion estimate for locally
schlicht Bloch functions.
Bull. Lond. Math. Soc. 26(1994),
539-542.
[9]
H. Yanagihara,
On the locally univalent Bloch constant.
J. Anal. Math. 65(1995), 1-17.
[10]
M. Bonk, D. Minda, and H. Yanagihara,
The hyperbolic
metric on Bloch regions,
Ali, Rosihan M. (ed.) et al.,
Computational methods and function theory 1994.
Proceedings
of the conference, Penang, Malaysia, March 21--25, 1994.
Singapore:
World Scientific. Ser. Approx. Decompos. 5(1995), 89-100.
[11]
M. Bonk, D. Minda, and H. Yanagihara,
Distortion theorems
for locally univalent Bloch functions,
J. Anal. Math. 69(1996),
73-95.
[12]
M. Bonk, D. Minda, and H. Yanagihara,
Distortion theorems
for Bloch functions,
Pac. J. Math. 179(1997), 241-262.
[13]
H. Yanagihara,
On the growth of Bloch functions,
Complex
Variables, Theory Appl. 44(2001), 103-115.
[14]
H. Yanagihara,
Regions of variablity for functions of
bounded derivatives,
Kodai Math. J. 28 (2005), 452--462.
[15]
H. Yanagihara,
Theory of conformal mappings, Vol. I
(Japanese)
[Kyoritsu Publ. Co., Tokyo, 1944], Vol. II [ibid.,
1949] by Yuaku Komatu.
Sci. Math. Jpn. 62 (2005), no. 2,
189--193. 30-03.
[16]
H. Yanagihara,
Regions of variablity of convex functions,
Math. Nachr. 279 (2006), 1723--1730.
[17]
S. Ponnusamy, A. Vasudevarao, H. Yanagihara,
Region of
variability for close-to-convex functions,
Complex Variables
and Elliptic Equations, 53(2008), 709-716.
[18]
S. Ponnusamy, A. Vasudevarao, H. Yanagihara,
Region of
variability of univalent functions $f(z)$ for which $zf'(z)$ is
spirallike,
Houston Journal of Mathematics, 34(2008),
1037-1048.
[19]
S. Ponnusamy, A. Vasudevarao, H. Yanagihara,
Region of
variability for close-to-convex functions-II,
Applied
Mathematics of Computation, 215(2009), 901-915.
[20]
T. Terada and H. Yanagihara,
Sharp distortion estimates
for $p$-Bloch functions,
Hiroshima Mathematical J., 40(2010),
17-36.
[21]
H. Yanagihara,
Variability Regions for Families of Convex
Functions,
Computational Methods and Function Theory, 10(2010),
291-302.
[22]
S. Ponnusamy, H. Yamamoto and H. Yanagihara,
Variability
regions for certain families of harmonic univalent mappings,
Complex Variables and Elliptic Equations
57 2011, 1-12.
[23]
R. Ohno and H. Yanagihara,
On a coefficient body for
Concave function,
Computational Methods and Function Theory,
2013 (13), 237-251.
[24]
A. Vasudevarao and H. Yanagihara,
On the growth of analytic
functions in class ${\mathcal U(\lambda )$,
Computational Methods and Function Theory 2013 (13), 237-251.
[25]
S. Ponnusamy, S. K. Sahoo and H. Yanagihara,
Radius of
convexity of partial sums of functions in the close-to-convex
family,
Nonlinear Analysis 95 (2014) 219-228.
[26]
M. Okada, S. Ponnusamy, A. Vasudevarao and H.
Yanagihara,
Circular Symmetrization, Subordination and
Arclength problems on Convex Functions,
Online Publication,
Math. Nach. 2015.